Министерство образования и науки Тамбовской области Тамбовское областное государственное бюджетное профессиональное образовательное учреждение «Мичуринский агросоциальный колледж» (ТОГБПОУ «Мичуринский агросоциальный колледж»)

УТВЕРЖДАЮ Директор ТОГБПОУ «Мичуринский агросоциальный колледж»

О.В. Котельникова 2023 г.

Фонд оценочных средств

учебной дисциплины ОП.08 Основы гидравлики и теплотехники программы подготовки специалистов среднего звена по специальности

35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования

PACCMOTPEHO		
На заседании методиче	ского совета	
Протокол № 10 от	22.05	2023г.
Председатель	А.В. Св	– иридов

Фонд оценочных средств разработан на основе Федерального государственного образовательного стандарта среднего профессионального образования по специальности 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования и профессионального стандарта "Специалист в области механизации сельского хозяйства" утвержденным приказом Министерства труда Российской Федерации от 02.09.2020 N 555н.

Разработчик:

Казанков С.В., преподаватель ТОГБПОУ «Мичуринский агросоциальный колледж», высшая квалификационная категория»

Рассмотрен на засе	дании предметно-цикловой комиссии учебных дисциплин (модулей) технического
	нального обучения
Протокол № 10 от	18.0 kg / 2023r.
Decasaran	Westween C.B.

І. Паспорт фонда оценочных средств

1. Область применения фонда оценочных средств

Фонд оценочных средств предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины ОП.08 Основы гидравлики и теплотехники.

В рамках оценочных материалов результатов освоения рабочей программы осуществляется оценка результатов практической подготовки обучающихся.

Оценка результатов практической подготовки осуществляется в образовательной организации (в колледже) и(или) на предприятии, в организации.

Фонд оценочных средств включает контрольные материалы для проведения текущего контроля и промежуточной аттестации в форме дифференцированного зачета.

Фонд оценочных средств разработан на основании:

основной профессиональной образовательной программы по специальности 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования;

программы учебной дисциплины ОП.08 Основы гидравлики и теплотехники.

Таблица 1

Наименование объектов контроля и оценки (объекты оценивания) ¹	Основные показатели оценки результата и их критерии	Тип задания; № задания	Форма аттестаци и (в соответств ии с учебным планом)
Умения: Использовать гидравлические устройства и тепловые установки в производстве	Использование гидравлических устройств и тепловых установок в производстве	устный опрос, тестирование. выполнение практических работ	
Знания: основные законы гидростатики, кинематики и динамики движущихся потоков; особенности движения жидкостей и газов по трубам (трубопроводам); основные положения теории подобия гидродинамических и теплообменных процессов; основные законы термодинамики; характеристики термодинамических процессов и тепломассообмена; принципы работы гидравлических машин и систем, их применение;	законы гидростатики, кинематики и динамики движущихся потоков; особенности движения жидкостей и газов по трубам (трубопроводам); основные положения теории подобия гидродинамических и теплообменных процессов; основные законы термодинамических процессов и тепломассообмена; принципы работы гидравлических машин и систем, их применение; виды и характеристики насосов и вентиляторов; принципы работы теплообменных аппаратов, их применение.	устный опрос, тестирование.	Дифференцированный зачет

¹ Личностные результаты обучающихся в соответствии с Рабочей программой воспитания по специальности 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования учитываются в ходе оценки результатов освоения учебной дисциплины.

		,	
виды и характеристики			
насосов и вентиляторов;			
принципы работы			
теплообменных аппаратов, их			
применение.			
ОК 01. Выбирать способы	демонстрация интереса к будущей	устный опрос,	
решения задач	профессии.	тестирование.	
профессиональной			
деятельности применительно к			
различным контекстам			
ОК 02. Использовать	извлечение и анализ информации из	устный опрос,	
современные средства поиска,	различных источников;	тестирование.	
анализа и интерпретации	использование различных способов		
информации, и	поиска информации;		
информационные технологии	применение найденной информации		
для выполнения задач	для решения профессиональных		
профессиональной	задач		
деятельности;	, , , , , , , , , , , , , , , , , , ,		
ОК 09. Пользоваться	использование профессиональной	устный опрос,	
профессиональной	документации на государственном и	тестирование.	
документацией на	иностранном языках	тестирование.	
государственном и	иностранном языках		
иностранном языках			
	Divide Haranger Montent of any	DI III O HII O HII O HII O	
ПК 1.1. Выполнять приемку,	Выполнять приемку, монтаж, сборку	выполнение	
монтаж, сборку и обкатку новой сельскохозяйственной	и обкатку новой	практических	
	сельскохозяйственной техники,	работ	
техники, оформлять	оформлять соответствующие		
соответствующие документы	документы		
ПК 1.2. Проводить	Проводить техническое	выполнение	
техническое обслуживание	Проводить техническое обслуживание сельскохозяйственной		
сельскохозяйственной	•	практических	
	техники при эксплуатации, хранении	работ	
техники при эксплуатации,	и в особых условиях эксплуатации, в		
хранении и в особых условиях	том числе сезонное техническое		
эксплуатации, в том числе	обслуживание		
сезонное техническое			
обслуживание			
ПК 1.3. Выполнять настройку	Выполнять настройку и регулировку	выполнение	
и регулировку	почвообрабатывающих, посевных,	практических	
почвообрабатывающих,	посадочных и уборочных машин, а	работ	
посевных, посадочных и	также машин для внесения		
уборочных машин, а также	удобрений, средств защиты растений		
машин для внесения	и ухода за сельскохозяйственными		
удобрений, средств защиты	культурами.		
растений и ухода за			
сельскохозяйственными			
культурами.			
ПК 1.4. Выполнять настройку	Осуществлять выполнение настройки	выполнение	
и регулировку машин и	и регулировки машин и	практических	
оборудования для	оборудования для обслуживания	работ	
обслуживания	животноводческих ферм, комплексов	_	
животноводческих ферм,	и птицефабрик.		
комплексов и птицефабрик.	. 1		
		1	

ПК 1.5. Выполнять настройку и регулировку рабочего и вспомогательного оборудования тракторов и автомобилей.	Осуществлять выполнение настройки и регулировки рабочего и вспомогательного оборудования тракторов и автомобилей.	выполнение практических работ
ПК 2.1. Выполнять	Выполнять обнаружение и	
обнаружение и локализацию	локализацию неисправностей	
неисправностей	сельскохозяйственной техники, а	
сельскохозяйственной	также постановку	
техники, а также постановку	сельскохозяйственной техники на	
сельскохозяйственной	ремонт	
техники на ремонт		
ПК 2.2. Проводить	Проводить диагностирование	выполнение
диагностирование	неисправностей	практических
неисправностей	сельскохозяйственной техники и	работ
сельскохозяйственной	оборудования.	
техники и оборудования.		
ПК 2.3. Определять способы	Определять способы ремонта	выполнение
ремонта (способы устранения	(способы устранения неисправности)	практических
неисправности)	сельскохозяйственной техники в	работ
сельскохозяйственной	соответствии с ее техническим	
техники в соответствии с ее	состоянием и ресурсы, необходимые	
техническим состоянием и	для проведения ремонта.	
ресурсы, необходимые для		
проведения ремонта.	D	
ПК 2.4. Выполнять	Выполнять восстановление	выполнение
восстановление	работоспособности или замену	практических
работоспособности или	детали (узла) сельскохозяйственной	работ
замену детали (узла) сельскохозяйственной	техники.	
сельскохозяиственнои техники.		
ПК 2.5. Выполнять	Винолияти	DI IIIOIIIIAIIIA
оперативное планирование	Выполнять оперативное планирование выполнения работ по	выполнение практических
выполнения работ по	техническому обслуживанию и	работ
техническому обслуживанию	ремонту сельскохозяйственной	Paooi
и ремонту	техники и оборудования.	
сельскохозяйственной	Tallian in ecopy Action in its	
техники и оборудования.		

2. Комплект оценочных средств

2.1. Задания для текущего контроля

Тестовые задания

по разделу 1. Основы гидравлики

Вариант 1

1. Что такое жидкость?

- а) физическое вещество, способное заполнять пустоты;
- б) физическое вещество, способное изменять форму под действием сил;
- в) физическое вещество, способное изменять свой объем;
- г) физическое вещество, способное течь.

2. Какая из этих жидкостей не является газообразной?

- а) жидкий азот;
- б) ртуть;
- в) водород;
- г) кислород;

3. На какие виды разделяют действующие на жидкость внешние силы?

- а) силы инерции и поверхностного натяжения;
- б) внутренние и поверхностные;
- в) массовые и поверхностные;
- г) силы тяжести и давления.

4. Какие силы называются поверхностными?

- а) вызванные воздействием объемов, лежащих на поверхности жидкости;
- б) вызванные воздействием соседних объемов жидкости и воздействием других тел;
- в) вызванные воздействием давления боковых стенок сосуда;
- г) вызванные воздействием атмосферного давления на поверхности тела.

5. В каких единицах измеряется давление в системе измерения СИ?

- а) в паскалях;
- б) в джоулях;
- в) в барах;
- г) в стоксах.

6. Если давление отсчитывают от относительного нуля, то его называют:

- а) абсолютным;
- б) атмосферным;
- в) избыточным;
- г) давление вакуума.

7. Какое давление обычно показывает манометр?

- а) абсолютное;
- б) избыточное;
- в) атмосферное;
- г) давление вакуума

8. Давление определяется

- а) отношением силы, действующей на жидкость к площади воздействия;
- б) произведением силы, действующей на жидкость на площадь воздействия;
- в) отношением площади воздействия к значению силы, действующей на жидкость;
- г) отношением разности действующих усилий к площади воздействия.

9. Вес жидкости в единице объема называют

- а) плотностью;
- б) удельным весом;
- в) удельной плотностью;
- г) весом.

10. Сжимаемость жидкости характеризуется

- а) коэффициентом Генри;
- б) коэффициентом температурного расширения;
- в) коэффициентом поджатия;
- г) коэффициентом объемного сжатия.

ключ к тесту 1:

№ вопроса	Правильный ответ
1	г)
2	б)
3	в)
4	г)
5	a)
6	a)
7	б)
8	б)
9	б)
10	Γ)

Раздел 1. Основы гидравлики

Вариант 2 (10)

1. Динамический коэффициент вязкости обозначается греческой буквой

- a) v;
- б) μ;
- в) η;
- г) τ.

2. Как называются разделы, на которые делится гидравлика?

- а) гидростатика и гидромеханика;
- б) гидромеханика и гидродинамика;
- в) гидростатика и гидродинамика;
- г) гидрология и гидромеханика.

3. Уравнение, позволяющее найти гидростатическое давление в любой точке рассматриваемого объема называется

- а) основным уравнением гидростатики;
- б) основным уравнением гидродинамики;
- в) основным уравнением гидромеханики;
- г) основным уравнением гидродинамической теории.

4. Закон Паскаля гласит

- а) давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям одинаково;
- б) давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям согласно основному уравнению гидростатики;
- в) давление, приложенное к внешней поверхности жидкости, увеличивается по мере удаления от свободной поверхности;
- г) давление, приложенное к внешней поверхности жидкости равно сумме давлений, приложенных с других сторон рассматриваемого объема жидкости.

5. Уравнение Бернулли для идеальной жидкости имеет вид

a);
$$z_1 + \frac{P_1}{2g} + \frac{v_1^2}{\rho g} = z_2 + \frac{P_2}{2g} + \frac{v_2^2}{\rho g}$$

6)
$$z_1 + \frac{P_2}{\rho g} + \frac{{\upsilon_1}^2}{2g} = z_2 + \frac{P_1}{\rho g} + \frac{{\upsilon_2}^2}{2g} + \sum h;$$

B)
$$z_1 + \frac{P_1}{\rho g} + \frac{\upsilon_1^2}{2g} = z_2 + \frac{P_2}{\rho g} + \frac{\upsilon_2^2}{2g}$$
;

r)
$$z_1 + \frac{v_1}{\rho g} + \alpha_1 \frac{P_1^2}{2g} = z_2 + \frac{v_2}{\rho g} + \alpha_2 \frac{P_2^2}{2g}$$
.

6. Член уравнения Бернулли, обозначаемый буквой z, называется

- а) геометрической высотой;
- б) пьезометрической высотой;
- в) скоростной высотой;
- г) потерянной высотой.

7. Член уравнения Бернулли, обозначаемый выражением $\frac{\alpha}{2z}$, называется

- а) пьезометрической высотой;
- б) скоростной высотой;
- в) геометрической высотой;
- г) такого члена не существует.

8. Турбулентный режим движения жидкости это

- а) режим, при котором частицы жидкости сохраняют определенный строй (движутся послойно);
- б) режим, при котором частицы жидкости перемещаются в трубопроводе бессистемно;
- в) режим, при котором частицы жидкости двигаются как послойно так и бессистемно;
- г) режим, при котором частицы жидкости двигаются послойно только в центре трубопровода.

9. Критическое значение числа Рейнольдса равно

- a) 2300;
- б) 3200;
- в) 4000;
- г) 4600.

10. При Re < 2300 режим движения жидкости

- а) кавитационный;
- б) турбулентный;
- в) переходный;
- г) ламинарный.

ключ к тесту 2:

	iene i k ieei j 2:
№ вопроса	Правильный ответ
1	б)
2	в)
3	a)
4	a)
5	в)
6	a)
7	б)

8	б)
9	a)
10	г)

Раздел 1. Основы гидравлики

Вариант 3 (10)

1. Скорость истечения жидкости через отверстие равна

a)
$$v = \varphi^2 \sqrt{2gH}$$
;

6)
$$\upsilon = 2\sqrt{\varphi g H}$$
;

B)
$$\upsilon = \sqrt{\varphi 2gH}$$
;

r)
$$v = \phi \sqrt{2gH}$$
.

2. В формуле для определения скорости истечения жидкости через отверстие

$$\upsilon = \phi \sqrt{2gH}$$
 буквой H обозначают

- а) дальность истечения струи;
- б) глубину отверстия;
- в) высоту резервуара;
- г) напор жидкости.

3. Повышение давления при гидравлическом ударе определяется по формуле

a)
$$\triangle P_{y\partial} = \sqrt{\frac{K}{\rho}};$$

6)
$$\triangle P_{y\partial} = \rho g h$$
;

B)
$$\triangle P_{y\partial} = \rho v_0 c$$

4. Мощность, которая передается от приводного двигателя к валу насоса называется

- а) полезная мощность;
- б) подведенная мощность;
- в) гидравлическая мощность;
- г) механическая мощность.

5. Что такое жидкость?

- а) физическое вещество, способное заполнять пустоты;
- б) физическое вещество, способное изменять форму под действием сил;
- в) физическое вещество, способное изменять свой объем;
- г) физическое вещество, способное течь.

6. Какая из этих жидкостей не является газообразной?

- а) жидкий азот;
- б) ртуть;
- в) водород;
- г) кислород;

7. На какие виды разделяют действующие на жидкость внешние силы?

- а) силы инерции и поверхностного натяжения;
- б) внутренние и поверхностные;

- в) массовые и поверхностные;
- г) силы тяжести и давления.

8. Какие силы называются поверхностными?

- а) вызванные воздействием объемов, лежащих на поверхности жидкости;
- б) вызванные воздействием соседних объемов жидкости и воздействием других тел;
- в) вызванные воздействием давления боковых стенок сосуда;
- г) вызванные воздействием атмосферного давления на поверхности тела.

9. В каких единицах измеряется давление в системе измерения СИ?

- а) в паскалях;
- б) в джоулях;
- в) в барах;
- г) в стоксах.

10. Если давление отсчитывают от относительного нуля, то его называют:

- а) абсолютным;
- б) атмосферным;
- в) избыточным;
- г) давление вакуума.

ключ к тесту 3:

№ вопроса	Правильный ответ
1	г)
2	г)
3	в)
4	б)
5	г)
6	б)
7	в)
8	г)
9	a)
10	a)

Раздел 1. Основы гидравлики

Вариант 4 (10)

1. Какая из этих жидкостей не является капельной?

- а) ртуть;
- б) керосин;
- в) нефть;
- г) азот.

2. Идеальной жидкостью называется

- а) жидкость, в которой отсутствует внутреннее трение;
- б) жидкость, подходящая для применения;
- в) жидкость, способная сжиматься;
- г) жидкость, существующая только в определенных условиях.

3. Какие силы называются массовыми?

- а) сила тяжести и сила инерции;
- б) сила молекулярная и сила тяжести;

- в) сила инерции и сила гравитационная;
- г) сила давления и сила поверхностная.

4. Жидкость находится под давлением. Что это означает?

- а) жидкость находится в состоянии покоя;
- б) жидкость течет;
- в) на жидкость действует сила;
- г) жидкость изменяет форму.

5. Если давление отсчитывают от абсолютного нуля, то его называют:

- а) давление вакуума;
- б) атмосферным;
- в) избыточным;
- г) абсолютным.

6. Если давление ниже относительного нуля, то его называют:

- а) абсолютным;
- б) атмосферным;
- в) избыточным;
- г) давление вакуума.

7. Чему равно атмосферное давление при нормальных условиях?

- a) 100 MΠa;
- б) 100 кПа;
- в) 10 ГПа;
- г) 1000 Па.

8. Массу жидкости заключенную в единице объема называют

- а) весом;
- б) удельным весом;
- в) удельной плотностью;
- г) плотностью.

9. Сжимаемость это свойство жидкости

- а) изменять свою форму под действием давления;
- б) изменять свой объем под действием давления;
- в) сопротивляться воздействию давления, не изменяя свою форму;
- г) изменять свой объем без воздействия давления.

10. Кинематический коэффициент вязкости обозначается греческой буквой

- a) v;
- б) μ;
- в) η;
- г) τ.

ключ к тесту 4:

№ вопроса	Правильный ответ
1	г)
2	a)
3	a)
4	в)
5	г)

6	г)
7	б)
8	г)
9	б)
10	a)

Раздел 1. Основы гидравлики

Вариант 5 (10)

- 1. Вязкость жидкости при увеличении температуры
- а) увеличивается;
- б) уменьшается;
- в) остается неизменной;
- г) сначала уменьшается, а затем остается постоянной.
- 2. Раздел гидравлики, в котором рассматриваются законы равновесия жидкости называется
- а) гидростатика;
- б) гидродинамика;
- в) гидромеханика;
- г) гидравлическая теория равновесия.
- 3. Основное уравнение гидростатического давления записывается в виде

a)
$$P = P_{amm} + \rho g h$$
;

6)
$$P = P_0 - pgh;$$

B)
$$P = P_0 + \rho g h$$
;

$$\mathbf{r}) P = P_0 + \rho \mathbf{y} h.$$

4. Равнодействующая гидростатического давления на цилиндрическую боковую поверхность равна

a)
$$F = \sqrt{F_x^2 + F_z^2 + F_y^2}$$
;

a)
$$F = \sqrt{F_x^2 + F_z^2 + F_y^2}$$
; 6) $F = \sqrt{F_x^2 - F_z^2 - F_y^2}$;

B)
$$F = \sqrt[3]{F_x^3 + F_z^3 + F_y^3}$$
;

B)
$$F = \sqrt[3]{F_x^3 + F_z^3 + F_y^3}$$
; Γ) $F = \sqrt[3]{\left(F_x + F_z + F_y\right)^2}$.

- 5. Расход потока обозначается латинской буквой
- a) *Q*;
- б) *V*;
- $_{\rm B}) P;$
- г) *H*.
- 6. Уравнение Бернулли для идеальной жидкости имеет вид

a);
$$z_1 + \frac{P_1}{2g} + \frac{v_1^2}{\rho g} = z_2 + \frac{P_2}{2g} + \frac{v_2^2}{\rho g}$$

6)
$$z_1 + \frac{P_2}{\rho g} + \frac{v_1^2}{2g} = z_2 + \frac{P_1}{\rho g} + \frac{v_2^2}{2g} + \sum h;$$

B)
$$z_1 + \frac{P_1}{\rho g} + \frac{\upsilon_1^2}{2g} = z_2 + \frac{P_2}{\rho g} + \frac{\upsilon_2^2}{2g}$$
;

r)
$$z_1 + \frac{v_1}{\rho g} + \alpha_1 \frac{P_1^2}{2g} = z_2 + \frac{v_2}{\rho g} + \alpha_2 \frac{P_2^2}{2g}$$

Ρ

7. Член уравнения Бернулли, обозначаемый выражением Рд называется

- а) скоростной высотой;
- б) геометрической высотой;
- в) пьезометрической высотой;
- г) потерянной высотой.

8. Ламинарный режим движения жидкости это

- а) режим, при котором частицы жидкости перемещаются бессистемно только у стенок трубопровода;
- б) режим, при котором частицы жидкости в трубопроводе перемещаются бессистемно;
- в) режим, при котором жидкость сохраняет определенный строй своих частиц;
- г) режим, при котором частицы жидкости двигаются послойно только у стенок трубопровода.

9. От каких параметров зависит значение числа Рейнольдса?

- а) от диаметра трубопровода, кинематической вязкости жидкости и скорости движения жилкости:
- б) от расхода жидкости, от температуры жидкости, от длины трубопровода;
- в) от динамической вязкости, от плотности и от скорости движения жидкости;
- г) от скорости движения жидкости, от шероховатости стенок трубопровода, от вязкости жидкости.

10. При Re > 2300 режим движения жидкости

- а) ламинарный;
- б) переходный;
- в) турбулентный;
- г) кавитационный.

ключ к тесту 5:

№ вопроса	Правильный ответ
1	б)
2	a)
3	в)
4	a)
5	a)
6	в)
7	в)
8	в)
9	a)

10	в)

Раздел 1. Основы гидравлики

Вариант 6 (10)

- 1. Какой буквой греческого алфавита обозначается коэффициент гидравлического трения?
- a) γ;
- б) ζ;
- B) λ;
- г) μ.
- 2. В формуле для определения скорости истечения жидкости через отверстие
- $\upsilon = \phi \sqrt{2gH}$ буквой ϕ обозначается
- а) коэффициент скорости;
- б) коэффициент расхода;
- в) коэффициент сжатия;
- г) коэффициент истечения.
- 3. Резкое повышение давления, возникающее в напорном трубопроводе при внезапном торможении рабочей жидкости называется
- а) гидравлическим ударом;
- б) гидравлическим напором;
- в) гидравлическим скачком;
- г) гидравлический прыжок.

4. Гидравлическими машинами называют

- а) машины, вырабатывающие энергию и сообщающие ее жидкости;
- б) машины, которые сообщают проходящей через них жидкости механическую энергию, либо получают от жидкости часть энергии и передают ее рабочим органам;
- в) машины, способные работать только при их полном погружении в жидкость с сообщением им механической энергии привода;
- г) машины, соединяющиеся между собой системой трубопроводов, по которым движется рабочая жидкость, отдающая энергию.
- 5. Мощность, которая отводится от насоса в виде потока жидкости под давлением называется
- а) подведенная мощность;
- б) полезная мощность;
- в) гидравлическая мощность;
- г) механическая мощность.
- 6. Какая из этих жидкостей не является капельной?
- а) ртуть;
- б) керосин;
- в) нефть;
- г) азот.

7. Идеальной жидкостью называется

- а) жидкость, в которой отсутствует внутреннее трение;
- б) жидкость, подходящая для применения;

- в) жидкость, способная сжиматься;
- г) жидкость, существующая только в определенных условиях.

8. Какие силы называются массовыми?

- а) сила тяжести и сила инерции;
- б) сила молекулярная и сила тяжести;
- в) сила инерции и сила гравитационная;
- г) сила давления и сила поверхностная.

9. Жидкость находится под давлением. Что это означает?

- а) жидкость находится в состоянии покоя;
- б) жидкость течет;
- в) на жидкость действует сила;
- г) жидкость изменяет форму.

10. Если давление отсчитывают от абсолютного нуля, то его называют:

- а) давление вакуума;
- б) атмосферным;
- в) избыточным;
- г) абсолютным.

ключ к тесту 6:

№ вопроса	Правильный ответ
1	в)
2	a)
3	a)
4	в)
5	б)
6	г)
7	a)
8	a)
9	в)
10	г)

Раздел 1. Основы гидравлики

Вариант 7 (10)

1. Идеальной жидкостью называется

- а) жидкость, в которой отсутствует внутреннее трение;
- б) жидкость, подходящая для применения;
- в) жидкость, способная сжиматься;
- г) жидкость, существующая только в определенных условиях.

2. Какие силы называются поверхностными?

- а) вызванные воздействием объемов, лежащих на поверхности жидкости;
- б) вызванные воздействием соседних объемов жидкости и воздействием других тел;
- в) вызванные воздействием давления боковых стенок сосуда;
- г) вызванные воздействием атмосферного давления на поверхность жидкости.

3. Если давление отсчитывают от абсолютного нуля, то его называют:

- а) давление вакуума;
- б) атмосферным;
- в) избыточным;
- г) абсолютным.

4. Какое давление обычно показывает манометр?

- а) абсолютное;
- б) избыточное;
- в) атмосферное;
- г) давление вакуума.

5. Массу жидкости заключенную в единице объема называют

- а) весом;
- б) удельным весом;
- в) удельной плотностью;
- г) плотностью.

6. Сжимаемость жидкости характеризуется

- а) коэффициентом Генри;
- б) коэффициентом температурного расширения;
- в) коэффициентом поджатия;
- г) коэффициентом объемного сжатия.

7. Вязкость жидкости при увеличении температуры

- а) увеличивается;
- б) уменьшается;
- в) остается неизменной;
- г) сначала уменьшается, а затем остается постоянной.

8. Уравнение, позволяющее найти гидростатическое давление в любой точке рассматриваемого объема называется

- а) основным уравнением гидростатики;
- б) основным уравнением гидродинамики;
- в) основным уравнением гидромеханики;
- г) основным уравнением гидродинамической теории.

9. Равнодействующая гидростатического давления на цилиндрическую боковую поверхность равна

a)
$$F = \sqrt{F_x^2 + F_z^2 + F_y^2}$$
;

a)
$$F = \sqrt{F_x^2 + F_z^2 + F_y^2}$$
; 6) $F = \sqrt{F_x^2 - F_z^2 - F_y^2}$;

B)
$$F = \sqrt[3]{F_x^3 + F_z^3 + F_y^3}$$
;

B)
$$F = \sqrt[3]{F_x^3 + F_z^3 + F_y^3}$$
; Γ) $F = \sqrt[3]{\left(F_x + F_z + F_y\right)^2}$.

10. Ламинарный режим движения жидкости это

- а) режим, при котором частицы жидкости перемещаются бессистемно только у стенок трубопровода;
- б) режим, при котором частицы жидкости в трубопроводе перемещаются бессистемно;
- в) режим, при котором жидкость сохраняет определенный строй своих частиц;
- г) режим, при котором частицы жидкости двигаются послойно только у стенок трубопровода.

ключ к тесту 7:

№ вопроса	Правильный ответ
1	a)

2	a)
3	г)
4	б)
5	г)
6	г)
7	б)
8	a)
9	a)
10	в)

Раздел 1. Основы гидравлики

Вариант 8 (10)

1. Уравнение Бернулли для идеальной жидкости имеет вид

$$\begin{aligned} \mathbf{a}); \ z_1 + \frac{P_1}{2g} + \frac{\upsilon_1^2}{\rho g} &= z_2 + \frac{P_2}{2g} + \frac{\upsilon_2^2}{\rho g} \\ \mathbf{6}) \ z_1 + \frac{P_2}{\rho g} + \frac{\upsilon_1^2}{2g} &= z_2 + \frac{P_1}{\rho g} + \frac{\upsilon_2^2}{2g} + \sum h; \\ \mathbf{B}) \ z_1 + \frac{P_1}{\rho g} + \frac{\upsilon_1^2}{2g} &= z_2 + \frac{P_2}{\rho g} + \frac{\upsilon_2^2}{2g}; \\ \mathbf{f}) \ z_1 + \frac{\upsilon_1}{\rho g} + \alpha_1 \frac{P_1^2}{2g} &= z_2 + \frac{\upsilon_2}{\rho g} + \alpha_2 \frac{P_2^2}{2g}. \end{aligned}$$

P

2. Член уравнения Бернулли, обозначаемый выражением РЕ называется

- а) скоростной высотой;
- б) геометрической высотой;
- в) пьезометрической высотой;
- г) потерянной высотой.

3. Критическое значение числа Рейнольдса равно

- a) 2300;
- б) 3200;
- в) 4000;
- г) 4600.

4. При Re < 2300 режим движения жидкости

- а) кавитационный;
- б) турбулентный;
- в) переходный;
- г) ламинарный.

5. Какой буквой греческого алфавита обозначается коэффициент гидравлического трения?

- a) γ;
- б) ζ;
- B) λ;
- г) μ.

6. В формуле для определения скорости истечения жидкости через отверстие

- $\upsilon = \phi \sqrt{2gH}$ буквой H обозначают
- а) дальность истечения струи;
- б) глубину отверстия;
- в) высоту резервуара;
- г) напор жидкости.

7. Гидравлическими машинами называют

- а) машины, вырабатывающие энергию и сообщающие ее жидкости;
- б) машины, которые сообщают проходящей через них жидкости механическую энергию, либо получают от жидкости часть энергии и передают ее рабочим органам;
- в) машины, способные работать только при их полном погружении в жидкость с сообщением им механической энергии привода;
- г) машины, соединяющиеся между собой системой трубопроводов, по которым движется рабочая жидкость, отдающая энергию.

8. Какая из этих жидкостей не является капельной?

- а) ртуть;
- б) керосин;
- в) нефть;
- г) азот.

9. На какие виды разделяют действующие на жидкость внешние силы?

- а) силы инерции и поверхностного натяжения;
- б) внутренние и поверхностные;
- в) массовые и поверхностные;
- г) силы тяжести и давления.

10. В каких единицах измеряется давление в системе измерения СИ?

- а) в паскалях;
- б) в джоулях;
- в) в барах;
- г) в стоксах.

ключ к тесту 8:

Killo i k ieei y o.	
№ вопроса	Правильный ответ
1	в)
2	в)
3	a)
4	г)
5	в)
6	г)
7	в)
8	г)
9	в)
10	a)

Раздел 1. Основы гидравлики

1. Если давление отсчитывают от относительного нуля, то его называют:

- а) абсолютным;
- б) атмосферным;
- в) избыточным;
- г) давление вакуума.

2. Чему равно атмосферное давление при нормальных условиях?

- a) 100 MΠa;
- б) 100 кПа;
- в) 10 ГПа;
- г) 1000 Па.

3. Вес жидкости в единице объема называют

- а) плотностью;
- б) удельным весом;
- в) удельной плотностью;
- г) весом.

4. Кинематический коэффициент вязкости обозначается греческой буквой

- a) v;
- б) μ;
- в) η;
- Γ) τ.

5. Как называются разделы, на которые делится гидравлика?

- а) гидростатика и гидромеханика;
- б) гидромеханика и гидродинамика;
- в) гидростатика и гидродинамика;
- г) гидрология и гидромеханика.

6. Закон Паскаля гласит

- а) давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям одинаково;
- б) давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям согласно основному уравнению гидростатики;
- в) давление, приложенное к внешней поверхности жидкости, увеличивается по мере удаления от свободной поверхности;
- г) давление, приложенное к внешней поверхности жидкости равно сумме давлений, приложенных с других сторон рассматриваемого объема жидкости.

гидростатического давления на цилиндрическую 7. Равнодействующая боковую поверхность равна

a)
$$F = \sqrt{F_x^2 + F_z^2 + F_y^2}$$
;

a)
$$F = \sqrt{F_x^2 + F_z^2 + F_y^2}$$
; 6) $F = \sqrt{F_x^2 - F_z^2 - F_y^2}$;

B)
$$F = \sqrt[3]{F_x^3 + F_z^3 + F_y^3}$$

B)
$$F = \sqrt[3]{F_x^3 + F_z^3 + F_y^3}$$
; Γ) $F = \sqrt[3]{\left(F_x + F_z + F_y\right)^2}$.

8. Расход потока обозначается латинской буквой

- a) *Q*;
- б) *V*;
- $_{\rm B}) P;$
- г) *H*.

9. Турбулентный режим движения жидкости это

- а) режим, при котором частицы жидкости сохраняют определенный строй (движутся послойно);
- б) режим, при котором частицы жидкости перемещаются в трубопроводе бессистемно;
- в) режим, при котором частицы жидкости двигаются как послойно так и бессистемно;
- г) режим, при котором частицы жидкости двигаются послойно только в центре трубопровода.

10. Какой буквой греческого алфавита обозначается коэффициент гидравлического трения?

- a) γ;
- б) ζ;
- a) λ;
- г) μ.

ключ к тесту 9:

	KIRO4 K ICCI y J.
№ вопроса	Правильный ответ
1	a)
2	б)
3	б)
4	a)
5	в)
6	a)
7	a)
8	a)
9	6)
10	в)

Раздел 1. Основы гидравлики

Вариант 10 (10)

1. Критическое значение числа Рейнольдса равно

- a) 2300;
- б) 3200;
- в) 4000;
- г) 4600.

2. При Re < 2300 режим движения жидкости

- а) кавитационный;
- б) турбулентный;
- в) переходный;
- г) ламинарный.

3. Скорость истечения жидкости через отверстие равна

a)
$$\upsilon = \varphi^2 \sqrt{2gH}$$
;

$$6) \ \upsilon = 2\sqrt{\varphi g H};$$

B)
$$\upsilon = \sqrt{\varphi 2gH}$$
;

r)
$$v = \phi \sqrt{2gH}$$
.

4. В формуле для определения скорости истечения жидкости через отверстие $\upsilon = \phi \sqrt{2gH}$ буквой ф обозначается

- а) коэффициент скорости;
- б) коэффициент расхода;
- в) коэффициент сжатия;
- г) коэффициент истечения.

5. Резкое повышение давления, возникающее в напорном трубопроводе при внезапном торможении рабочей жидкости называется

- а) гидравлическим ударом;
- б) гидравлическим напором;
- в) гидравлическим скачком;
- г) гидравлический прыжок.

6. Мощность, которая передается от приводного двигателя к валу насоса называется

- а) полезная мощность;
- б) подведенная мощность;
- в) гидравлическая мощность;
- г) механическая мощность.

7. Какие силы называются поверхностными?

- а) вызванные воздействием объемов, лежащих на поверхности жидкости;
- б) вызванные воздействием соседних объемов жидкости и воздействием других тел;
- в) вызванные воздействием давления боковых стенок сосуда;
- г) вызванные воздействием атмосферного давления на поверхность жидкости.

8. Жидкость находится под давлением. Что это означает?

- а) жидкость находится в состоянии покоя;
- б) жидкость течет;
- в) на жидкость действует сила;
- г) жидкость изменяет форму.

9. В каких единицах измеряется давление в системе измерения СИ?

- а) в паскалях;
- б) в джоулях;
- в) в барах;
- г) в стоксах.

10. Если давление отсчитывают от абсолютного нуля, то его называют:

- а) давление вакуума;
- б) атмосферным;
- в) избыточным;
- г) абсолютным.

ключ к тесту 10:

№ вопроса	Правильный ответ
1	a)
2	г)
3	г)
4	a)
5	a)

6	б)
7	г)
8	в)
9	a)
10	г)

Условия выполнения задания

- 1. Место (время) выполнения задания: задание выполняется на занятие в аудиторное время
- 2. Максимальное время выполнения задания: 45 мин

Шкала оценки образовательных достижений:

Критерии оценки:

<<5>> - 100 - 90% правильных ответов

«4» - 89 - 80% правильных ответов

«3» - 79 – 70% правильных ответов

«2» - 69% и менее правильных ответов

Практические работы по разделу 1. Основы гидравлики

Практическая работа №1-2.

Тема: Общие законы и уравнения статики и динамики жидкостей и газов.

Наименование работы: Расчёт силы гидростатического давления, расхода жидкости и скорости истечения.

Цель работы: - закрепить знания расчётных формул для определения силы гидростатического давления, расхода жидкости и скорости истечения;

- решить задачи.

Задание:

Задача 1: Стальной трубопровод длиной 1200 м закрывается в течении 2 с. Скорость движения воды в трубопроводе 3 м/с. Определить увеличение давления.

Задача 2: Определить скорость истечения и расход воды через отверстие в тонкой стенке резервуара, если напор над центром отверстия 10 м, диаметр отверстия 100 мм, коэффициент скорости $\phi = 0.97$; коэффициент расхода $\mu = 0.62$.

Задача 3: Вычислить расход воды, вытекающей из бассейна через внутреннюю цилиндрическую насадку диаметром 200 мм; напор 4 м; коэффициент расхода $\mu = 0.74$.

Задача 4: Ручная шланговая мойка автомобилей и прицепов производится брандспойтом. Какое давление должен создавать насос, чтобы получить расход воды 40 л/мин через сопло диаметром отверстия 3,5 мм. Диаметр шланга 25 мм. Потери напора не учитывать. Атмосферное давление принять 10^5 Па.

Учебная литература

- 1. Брюханов И.Н. «Основы гидравлики и теплотехники».
- 2. Процкий А.Е. «Основы гидравлики и теплотехники».

Условия выполнения задания

- 1. Место (время) выполнения задания: задание выполняется на занятие в аудиторное время
- 2. Максимальное время выполнения задания: <u>90</u> мин.
- 3. Вы можете воспользоваться учебником, конспектом лекций

Шкала оценки образовательных достижений:

Критерии оценки:

Задачи 1, 2 – удовлетворительно;

Задачи 1,2,3 – хорошо:

Задачи 1,2, 3, 4 – отлично.

Практическая работа №3-4.

Тема: Турбулентность и её основные статические характеристики.

Наименование работы: Гидравлический расчёт трубопроводов.

Цель работы: - закрепить знания по видам гидравлических сопротивлений; основные

положения гидравлического расчёта трубопроводов;

- выполнить гидравлический расчёт трубопровода.

Задание: Определить необходимый диаметр трубопровода длиной 65 м, при расходе 23 л/с и напоре 0,6 м.

Трубопровод предназначен для подачи воды из резервуара $\bf A$ в резервуар $\bf B$. Движение жидкости происходит за счёт разности уровней жидкости в резервуарах. На трубопроводе два резких поворота трубы на 90° C.

Задание: Определить напор трубопровода длиной 200 м, диаметром 200 и 150 мм (внезапное сужение трубы на середине трубопровода), расход 25 л/с.

Движение жидкости происходит за счёт разности давления в начальном (геометрический напор 3 м) и конечном (геометрический напор 4,5 м) сечений, создаваемой работой насоса. Вода подаётся из озера в водонапорную башню.

Контрольные вопросы

- 1. Из чего складывается полная потеря напора?
- 2. От чего зависит значение коэффициента гидравлического трения?
- 3. От чего зависит значение коэффициента местных сопротивлений?

Учебная литература

- 3. Брюханов И.Н. «Основы гидравлики и теплотехники».
- 4. Процкий А.Е. «Основы гидравлики и теплотехники».

Условия выполнения задания

- 1. Место (время) выполнения задания: задание выполняется на занятие в аудиторное время
- 2. Максимальное время выполнения задания: 90 мин
- 3. Вы можете воспользоваться учебником, конспектом лекций

Шкала оценки образовательных достижений:

Критерии оценки:

Выполнение практически всей работы (не менее 70%) – положительная оценка

Практическая работа №5.

Тема: Гидравлические машины.

Наименование работы: Расчёт и подбор насосной установки.

Цель работы: - закрепить знания по техническим показателям насосов;

- выполнить расчёт насосной установки.

Оснащение рабочего места: тетрадь для практических работ, калькулятор.

Задание: Определить полный напор и мощность насоса, имеющего следующую характеристику: подача насоса 1,7 л/с; геометрический напор 18 м; давление 57 кПа, КПД 63%.

Всасывающая труба насоса диаметром 70 мм и длиной 18 м. Труба имеет одно колено (ξ_{κ} = 0,4), на ней установлена задвижка, открытая на ½ ($\xi_{\rm 3}$ = 2,06), а на входе установлена приёмная сетка ($\xi_{\rm c}$ = 6).

Вода перекачивается на расстояние 950 м.

Подобрать насос и электродвигатель для привода насоса.

Контрольные вопросы

- 1.Классификация насосов.
- 2.Основные технические показатели насосов.
- 3.Подача насоса.
- 4. Потери мощности в насосе.

Учебная литература

- 1. Брюханов И.Н. «Основы гидравлики и теплотехники».
- 2. Процкий А.Е. «Основы гидравлики и теплотехники».

Условия выполнения задания

- 1. Место (время) выполнения задания: задание выполняется на занятие в аудиторное время
- 2. Максимальное время выполнения задания: 90 мин.
- 3. Вы можете воспользоваться учебником, конспектом лекций

Шкала оценки образовательных достижений:

Критерии оценки:

Выполнение практически всей работы (не менее 70%) – положительная оценка

Практическая работа №6.

Тема: Основы сельскохозяйственного водоснабжения и гидромелиорации.

Наименование работы: Расчёт каналов при гидромелиорации.

Цель работы: - повторить основные положения расчёта оросительных каналов; формы поперечных каналов;

- рассчитать канал.

Оснащение рабочего места: тетрадь для практических работ, калькулятор.

Задание: Определить ширину прямоугольного канала по дну, если расход воды в канале 8 м³/с, глубина наполнения канала 2 м, уклон дна канала 0,001; коэффициент шероховатости 0,02.

Контрольные вопросы

- 1. Оросительная система. Её техническая задача.
- 2. Основные элементы оросительной системы.
- 3. Основные формы поперечных сечений каналов.

Учебная литература

- 1. Брюханов И.Н. «Основы гидравлики и теплотехники».
- 2. Процкий А.Е. «Основы гидравлики и теплотехники».

Условия выполнения задания

1. Место (время) выполнения задания: задание выполняется на занятие в аудиторное время

- 2. Максимальное время выполнения задания: 90_ мин.
- 3. Вы можете воспользоваться учебником, конспектом лекций

Шкала оценки образовательных достижений:

Критерии оценки:

Выполнение практически всей работы (не менее 70%) – положительная оценка

Задания в тестовой форме по разделу 2: Основы теплотехники

Вариант 1

- 1. В сосуде объемом 0.75 м³ находится 2.5 кг углекислого газа. Найти плотность газа.
 - a) 3.33 KF/M^3 ;
 - б) $1.875 \text{ кг} \cdot \text{м}^3$;
 - в) $0.3 \text{ м}^3/\text{кг}$;
 - г) 0.3 кг/м^3 .
- 2. Укажите уравнение состояния для 1 кг идеального газа.
 - a) pv = const;
 - б) pV = mRT;
 - B) pv = RT;
 - Γ) $pv = R_0T$
- 3. Укажите уравнение состояния идеального газа.
 - a) pv = const;
 - б) pV = mRT;
 - в) pv = RT;

$$\Gamma) \left(p + \frac{a}{v^2} \right) (v - b) = RT.$$

- 4. Укажите уравнение первого закона термодинамики.
 - a) $\Delta S = O/T$;
 - δ) $Q=\Delta U + L$;
 - B) $\Delta H = \Delta U + pV$;
 - Γ) $\Delta H = \Delta U pV$.
- 5. К газу подводится извне 200 кДж теплоты, изменение внутренней энергии ΔU составляет 20 кДж. Определить удельную работу, кДж/кг.
 - a) $\ell = 20 \text{ кДж/кг}$;
 - б) $\ell = 300 \, \text{кДж/кг};$
 - в) $\ell = 100 \text{ кДж/кг}$;
 - Γ) $\ell = 180 \text{ кДж/к} \Gamma$.
- 6. Термический коэффициент полезного действия равен:
 - а) Отношению теплоты, подведенной к рабочему телу, к работе цикла;
 - б) отношению теплоты, отнятой у рабочего тела, к работе цикла;
 - в) отношению работы цикла к теплоте, подведенной в цикле к рабочему телу;
 - г) отношению работы цикла к теплоте, отведенной в цикле от рабочего тела.

- 7. К газу в круговом процессе подведено 250 кДж/кг теплоты. Термический КПД равен 0,5. Найти работу, полученную в цикле.
 - а) 125 кДж/кг;
 - б) 500 кДж/кг;
 - в) 250 кДж/кг;
 - г) 225 кДж/кг.

8. Кипение – это:

- а) Процесс парообразования с поверхности жидкости;
- б) процесс парообразования во всем объеме жидкости;
- в) переход вещества из твердого состояния в газообразное;
- г) процесс парообразования с поверхности жидкости и во всем объеме жидкости.

9. Конденсация - это:

- а) Переход вещества из жидкого состояния в газообразное;
- б) переход вещества из газообразного состояния в жидкое;
- в) переход вещества из твердого состояния в газообразное;
- г) переход вещества из жидкого состояния в твердое.

10. Влагосодержание влажного воздуха - это:

- а) Количество водяного пара в 1 кг влажного воздуха;
- б) количество водяного пара в 1 м³ влажного воздуха;
- в) количество водяного пара, приходящееся на 1 кг сухого воздуха;
- г) количество насыщенной жидкости в 1 кг влажного воздуха.

ключ к тесту 1:

№ вопроса	Правильный ответ
1	a)
2	в)
3	б)
4	б)
5	г)
6	в)
7	a)
8	б)
9	6)
10	a)

Раздел 2: Основы теплотехники.

Вариант 2 (10)

- 1. В системе находится воздух с избыточным давлением $p_{\rm H36} = 0.4$ МПа. Атмосферное давление $p_0 = 0.1$ МПа. Определить абсолютное давление.
 - a) 0.5 MΠa;
 - б) 0.3 МПа;
 - в) 0.25 MПa;
 - г) 0.4 МПа.

2. Величина R₀ носит название:

а) Газовой постоянной;

5)
б) универсальной газовой постоянной; в) постоянной Больцмана;
в) постоянной больцмана, г) постоянной Кирхгофа.
г) постоянной кирхгофа.
3. Энтальпия (Н) термодинамической системы равна:
a) $H = U + pV$;
$6) H = c_v + R;$
B) H = U + Ts;
Γ) $H = c_p + R$.
4. Укажите уравнение первого закона термодинамики.
a) $\Delta S = Q/T$;
6) $Q=\Delta U + L$;
B) $\Delta H = \Delta U + pV$;
Γ) $\Delta H = \Delta U - pV$.
5.
6. К газу подводится извне 100 кДж теплоты. Произведенная работа при этом составляе
120 кДж. Определить изменение внутренней энергии газа Δ u, кДж/кг.
а) -20 кДж/кг;
б) 220 кДж/кг;
в) 20 кДж/кг;
г) - 100 кДж/кг.
6. Теплоемкость какого процесса равна нулю.
а) Изотермического;
б) изохорного;
в) адиабатного;
г) изобарного.
7. Для насыщенного воздуха относительная влажность ф равна:
a) $\varphi = 0\%$.;
$\phi = 100\%$.;
B) $\varphi = 120\%$.;
Γ) $\phi = 50\%$
8. Пополинта отрот:
8. Дополните ответ: КПД двигателя внутреннего сгорания с увеличением степени сжатия
хид доптатыл опутрыны от оранил с убынчения степени сматил

	8.	Дополните	ответ
--	----	-----------	-------

(Увеличивается)

9. Дополните ответ:

Сублимация - это_

(переход вещества из твердого состояния в газообразное)

10. Если степень сухости влажного пара равна 0,9, это значит:

- а) В 1 кг пара содержится 0,9 кг насыщенной жидкости и 0,1 кг сухого насыщенного пара;
- б) в 1 кг пара содержится 0,1 кг насыщенной жидкости и 0,9 кг сухого насыщенного пара;
- в) в 1 кг пара содержится 0,1 кг влажного пара и 0,9 кг сухого насыщенного пара;
- г) В 1 кг пара содержится 0,9 кг насыщенной жидкости и 0,1 кг сухого влажного пара.

ключ к тесту 2:

№ вопроса	Правильный ответ
1	a)

2	6)
3	a)
4	б)
5	a)
6	a)
7	б)
8	Увеличивается
9	переход вещества из
	твердого состояния в
	газообразное
10	в)

Раздел 2: Основы теплотехники.

Вариант 3 (10)

1. Для насыщенного воздуха относительная влажность ф равна:

- a) $\varphi = 0\%$.;
- 6) $\varphi = 100\%$.;
- B) $\phi = 120\%$.;
- Γ) $\varphi = 50\%...$

2. Коэффициент теплопроводности λ, Вт/(м·К) характеризует:

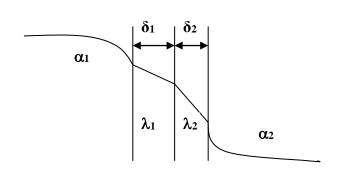
- а) Способность вещества передавать теплоту;
- б) интенсивность теплообмена между поверхностью тела и средой;
- в) интенсивность собственного излучения тела;
- г) способность вещества проводить теплоту.

3. Укажите формулу для определения коэффициента теплопередачи.

a)
$$\lambda = \frac{|q|}{|gradt|}$$
;

$$6) k = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}};$$

B)
$$a = \frac{\lambda}{c \cdot \rho}$$
;


$$_{\Gamma)} q = \frac{1}{2\lambda} \ln \frac{\mathrm{d}_2}{\mathrm{d}_1}$$

4. Укажите формулу для определения термического сопротивления теплопередачи плоской стенки.

a)
$$\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}$$
;

6)
$$\frac{1}{\alpha_1} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \frac{1}{\alpha_2}$$
;

$$\text{B)} \ \frac{1}{\alpha_1} + \frac{\delta_1 + \delta_2}{\lambda_1 + \lambda_2} + \frac{1}{\alpha_2} ;$$

r)
$$\frac{1}{\alpha_1} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \frac{1}{\alpha_2} + k$$
.

5. Теплоотдачей называется перенос теплоты:

- а) От жидкости к жидкости через разделяющую их стенку;
- б) между потоком жидкости (или газа) и стенкой;
- в) молекулярный перенос теплоты в телах;
- г) от газа к газу через разделяющую их стенку.

6. Регенераторы – это:

- а) Теплообменные аппараты, в которых передача теплоты между двумя жидкостями осуществляется через разделяющую стенку;
- б) теплообменные аппараты, в которых обмен теплотой осуществляется при смешивании горячей и холодной жидкостей;
- в) теплообменные аппараты, в которых одна и та же поверхность нагрева омывается то горячей, то холодной жидкостью;
- г) теплообменные аппараты, в которых обмен теплотой осуществляется при смешивании горячего и холодного воздуха.

7. Термодинамическую систему, которая не обменивается с окружающей средой теплотой:

- а) называют изолированной;
- б) называют закрытой;
- в) называют адиабатной;
- г) называют изоляционной.

8. Работу расширения можно выразить в виде уравнения:

- a) L=pV;
- б) L=p/V;
- в) L= $p\Delta V$;
- Γ) L=pdV.

9. Работа расширения в изохорном процессе:

- а) не равна 0, т. к. dv=0;
- б) равна 0, т. к. dv=0;
- в) равна 0, т. к. dv≠0;
- г) не равна 0, т. к. dv≠0.

10. Процесс с подводом теплоты при постоянном объеме называется:

- а) изохорный;
- б) изобарный;
- в) изотермический;
- г) адиабатный.

11. Установите соответствие между понятием и его определением:

1. Первый закон	А) при любом спонтанном процессе энтропия (мерило	
термодинамики	беспорядка) системы всегда увеличивается или остается	
2. Второй закон	постоянной.	
термодинамики	Б) по мере достижения абсолютного нуля температуры (0 К)	
3. Третий закон	энтропия системы стремится к минимальному значению	
термодинамики	В) энергия не исчезает и не возникает из ничего, а только	
	преобразуется из одной формы в другую.	

ключ к тесту 3:

№ вопроса	Правильный ответ
1	б)
2	г)
3	a)
4	в)
5	б)
6	в)
7	a)
8	в)
9	б)
10	б)
11	2-А, 1-В, 3-Б

Раздел 2: Основы теплотехники.

Вариант 4 (10)

- 1. Перенос теплоты при соприкосновении частиц, имеющих различную температуру, называется:
 - а) Теплопроводностью;
 - б) конвекцией;
 - в) излучением;
 - г) теплопередачей.
- 2. Укажите выражение для определения термического сопротивления цилиндрической стенки (для теплопроводности).

a)
$$\frac{\delta}{\lambda}$$

$$6) \ \frac{1}{2\lambda}ln\frac{d_2}{d_1};$$

B)
$$\frac{1}{d \cdot \alpha}$$
;

r)
$$\frac{\lambda}{c \cdot \rho}$$

- 3.Укажите уравнение теплопередачи:
 - a) $Q = k(t_1-t_2) F$;
 - 6) $Q = \alpha (t_1-t_2) F$;
 - B) $Q = G_1 (h'_1 h''_1)F$;

$$_{\Gamma)} Q = \frac{1}{2\lambda} \ln \frac{\mathrm{d}_2}{\mathrm{d}_1}$$
.

- 4. Коэффициент теплоотдачи α, Вт/(м²·К) характеризует:
 - а) Способность вещества проводить теплоту;
 - б) интенсивность собственного излучения тела;
 - в) интенсивность теплообмена между поверхностью тела и средой;

г) способность вещества передавать теплоту.

5. Укажите уравнение теплопередачи в рекуперативном теплообменнике.

- a) $Q = k \cdot F \cdot \Delta t_{cp}$;
- Θ) $Q = α·F(t_{xx} t_{cx});$
- B) $Q = G(h'_1 h''_1);$
- r) $Q = G_1 (h'_{1}-h''_{1})F$.

6. Рекуперативные теплообменники – это:

- а) Теплообменные аппараты, в которых передача теплоты между двумя жидкостями осуществляется через разделяющую стенку;
- б) теплообменные аппараты, в которых обмен теплотой осуществляется при смешивании горячей и холодной жидкостей;
- в) теплообменные аппараты, в которых одна и та же поверхность нагрева омывается то горячей, то холодной жидкостью;
- г) теплообменные аппараты, в которых обмен теплотой осуществляется при смешивании горячего и холодного воздуха.

7. В двигателе внутреннего сгорания рабочим телом:

- а) являются отработавшие газы;
- б) является топливо;
- в) является смесь воздуха с парами топлива;
- г) является смесь кислорода с парами топлива.

8. Цикл Карно:

- а) состоит из двух равновесных изобарных и двух равновесных адиабатных процессов;
- б) состоит из двух равновесных изохорных и двух равновесных адиабатных процессов;
- в) состоит из двух равновесных политропных и двух равновесных адиабатных процессов;
- г) состоит из двух равновесных изотермических и двух равновесных адиабатных процессов.

9. Степенью сжатия называется:

- а) отношение объема камеры сгорания к объему цилиндра;
- б) отношение длины камеры сгорания к длине цилиндра;
- в) отношение объема цилиндра к объему камеры сгорания;
- г) отношение объема, занимаемого поршнем к объему камеры сгорания.

10. Процесс с подводом теплоты при постоянном давлении называется:

- а) изохорный;
- б) изобарный;
- в) изотермический;
- г) адиабатный.

11. Установите соответствие между понятием и его определением:

1.Теплопрово́дность	А) физический процесс передачи тепловой энергии от более
2. Теплообмен	горячего тела к имеющему более маленькую температуру,либо
3. Теплопередача	непосредственно (при контакте), либо через посредника
	(проводника) или разделяющую перегородку (тела или среды) из
	какого-либо материала
	Б) способность материальных тел проводить тепловую энергию от
	более нагретых частей тела к менее нагретым частям тела путём
	хаотического движения частиц тела
	В) процесс передачи тепловой энергии между телами или
	системами, находящимися в разных температурных состояниях

ключ к тесту 4:

№ вопроса	Правильный ответ
1	a)
2	б)
3	a)
4	в)
5	a)
6	a)
7	a)
8	г)
9	в)
10	б)
11	2-В, 1-Б, 3-А

Раздел 2: Основы теплотехники.

Вариант 5 (10)

1. Процесс теплообмена между поверхностью твердого тела и жидкостью (газом):

- а) называется теплопередачей;
- б) называется теплоотдачей;
- в) называется теплопроводностью;
- г) называется теплоемкостью.

2. Теплообменником называют аппарат, предназначенный:

- а) для отвода теплоты от теплоносителей;
- б) для подвода теплоты к теплоносителям;
- в) для сообщения теплоты одному из теплоносителей в результате его отвода от другого теплоносителя;
- г) для сообщения теплоты одному из теплоносителей в результате его сообщения другому теплоносителю.

3. В автомобильных двигателях внутреннего сгорания рекуперативные теплообменники:

- а) используют для охлаждения тормозной системы;
- б) используют для охлаждения двигателя внутреннего сгорания;
- в) используют для охлаждения подвески автомобиля;
- г) используют для охлаждения системы зажигания.

4. Смесительным называется теплообменник, у которого:

- а) передача теплоты от одного теплоносителя к другому осуществляется через разделяющую их твердую стенку;
- б) передача теплоты от одного теплоносителя к другому осуществляется их непосредственным соприкосновением;
- в) горячий теплоноситель соприкасается с твердым телом и отдает ему теплоту, далее холодный теплоноситель соприкасается с твердым телом и воспринимает теплоту, аккумулированную твердым телом;
- г) горячий теплоноситель взаимодействует с твердым телом и реагирует с теплотой, далее холодный теплоноситель соприкасается с твердым телом и воспринимает теплоту, аккумулированную твердым телом.

5. В системе СИ единица удельного объема измеряется:

- a) в $M^2/K\Gamma$;
- б) в м/ $\kappa \Gamma^3$;
- B) B $M^3/K\Gamma$;
- Γ) в $M^3/\kappa\Gamma^3$.

6. Единицей измерения удельной внутренней энергии является:

- а) Дж/кг;
- б) Дж/К;
- в) эВ/кг;
- г) Дж/(моль×К).

7. При сжатии:

- а) температура рабочего тела падает;
- б) температура рабочего тела не изменяется;
- в) температура рабочего тела не возрастает;
- г) температура рабочего тела возрастает.

8. В сосуде объемом 0.75 м³ находится 2.5 кг углекислого газа. Найти плотность газа.

- a) 3.33 KF/M^3 ;
- б) $1.875 \text{ кг} \cdot \text{м}^3$;
- в) $0.3 \text{ м}^3/\text{кг}$;
- г) 0.3 кг/м^3 .

9. Величина Ro носит название:

- а) Газовой постоянной;
- б) универсальной газовой постоянной;
- в) постоянной Больцмана;
- г) постоянной Кирхгофа.

10. Энтальпия (Н) термодинамической системы равна:\

- a) H = U + pV;
- 6) $H = c_v + R$;
- B) H = U + Ts;
- Γ) $H = c_p + R$.

ключ к тесту 5:

№ вопроса	Правильный ответ
1	б)
2	в)
3	б)
4	б)
5	в)
6	a)
7	г)
8	a)
9	б)
10	a)

Раздел 2: Основы теплотехники.

Вариант 6 (10)

1. Теплопередача- это:

а) процесс переноса теплоты от горячей жидкости к холодной;

- б) процесс переноса теплоты от горячей жидкости к холодной через разделяющую их стенку;
- в) процесс переноса теплоты от холодной жидкости к горячей через разделяющую их стенку;
- г) процесс переноса теплоты от холодной жидкости к горячей.

2. Рекуперативным называется теплообменник, у которого:

- а) происходит передача теплоты от одного теплоносителя к другому;
- б) передача теплоты от одного теплоносителя к другому осуществляется через разделяющую их границу раздела;
- в) передача теплоты от одного теплоносителя к другому осуществляется через разделяющую их твердую стенку;
- г) передача теплоты от одного теплоносителя к другому осуществляется через разделяющую их жидкость.

3. Регенеративным называется теплообменник, у которого:

- а) передача теплоты от одного теплоносителя к другому осуществляется через разделяющую их твердую стенку;
- б) передача теплоты от одного теплоносителя к другому осуществляется при непосредственном их контакте;
- в) горячий теплоноситель соприкасается с твердым телом и отдает ему теплоту, далее холодный теплоноситель соприкасается с твердым телом и воспринимает теплоту, аккумулированную твердым телом;
- г) горячий теплоноситель взаимодействует с твердым телом и реагирует с теплотой, далее холодный теплоноситель соприкасается с твердым телом и воспринимает теплоту, аккумулированную твердым телом.

4. Если в теплообменнике горячая и холодная жидкости протекают:

- а) параллельно и в одном направлении, то такая схема называется противоточной;
- б) параллельно и в разных направлениях, то такая схема называется прямоточной;
- в) параллельно и в одном направлении, то такая схема называется прямоточной;
- г) параллельно и в разных направлениях, то такая схема называется приточной.

5. В системе СИ давление выражается:

- a) $\kappa \Gamma / M^2$;
- б) Па:
- $^{\circ}$ $^{\circ}$ $^{\circ}$ / $^{\circ}$ / $^{\circ}$;
- Γ) H/m³.

6. Единицей измерения удельной энтальпии является:

- а) Дж/кг;
- б) Дж/К;
- в) эВ/кг;
- г) Дж/(моль×К).

7. При расширении:

- а) температура рабочего тела падает;
- б) температура рабочего тела не изменяется;
- в) температура рабочего тела не возрастает;
- г) температура рабочего тела возрастает.

8. В сосуде объемом 0.75 м³ находится 2.5 кг углекислого газа. Найти плотность газа.

- a) 3.33 kg/m^3 ;
- б) $1.875 \text{ кг} \cdot \text{м}^3$:
- в) $0.3 \text{ м}^3/\text{кг}$;
- Γ) 0.3 κ Γ / M^3 .

9. Укажите уравнение состояния для 1 кг идеального газа.

- a) pv = const;
- б) pV = mRT;
- B) pv = RT;

- Γ) pv = R_0T
- 10. Теплоемкость какого процесса равна нулю.
 - а) Изотермического;
 - б) изохорного;
 - в) адиабатного;
 - г) изобарного.

ключ к тесту 6:

	KIROA K ICCI y O.
№ вопроса	Правильный ответ
1	6)
2	В)
3	в)
4	в)
5	б)
6	a)
7	г)
8	a)
9	в)
10	a)

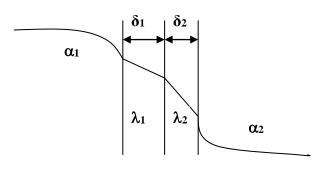
Раздел 2: Основы теплотехники.

Вариант 7 (10)

- 1. Укажите уравнение состояния идеального газа.
 - a) pv = const;
 - б) pV = mRT;
 - B) pv = RT;

$$\Gamma) \left(p + \frac{a}{v^2} \right) (v - b) = RT.$$

- 1. К газу подводится извне 100 кДж теплоты. Произведенная работа при этом составляет 120 кДж. Определить изменение внутренней энергии газа Δu , кДж/кг.
 - а) -20 кДж/кг;
 - б) 220 кДж/кг;
 - в) 20 кДж/кг;
 - г) 100 кДж/кг.
- 3. Термический коэффициент полезного действия равен:
 - а) Отношению теплоты, подведенной к рабочему телу, к работе цикла;
 - б) отношению теплоты, отнятой у рабочего тела, к работе цикла;
 - в) отношению работы цикла к теплоте, подведенной в цикле к рабочему телу;
 - г) отношению работы цикла к теплоте, отведенной в цикле от рабочего тела.
- 4. КПД двигателя внутреннего сгорания с увеличением степени сжатия:
 - а) Увеличивается;
 - б) уменьшается;
 - в) не изменяется;
 - г) изменяется периодически.
- 5. Конденсация это:
 - а) Переход вещества из жидкого состояния в газообразное;
 - б) переход вещества из газообразного состояния в жидкое;
 - в) переход вещества из твердого состояния в газообразное;
 - г) переход вещества из жидкого состояния в твердое.


- 6. Для насыщенного воздуха относительная влажность ф равна:
 - a) $\varphi = 0\%$.;
 - φ = 100%.;
 - B) $\varphi = 120\%$.;
 - Γ) $\varphi = 50\%...$
- 7. Укажите выражение для определения термического сопротивления цилиндрической стенки (для теплопроводности).
 - a) $\frac{\delta}{\lambda}$;
 - 6) $\frac{1}{2\lambda} \ln \frac{d_2}{d_1}$;
 - B) $\frac{1}{d \cdot \alpha}$;
 - Γ) $\frac{\lambda}{c \cdot \rho}$.
- 8. Укажите формулу для определения термического сопротивления теплопередачи плоской стенки.

a)
$$\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}$$
;

6)
$$\frac{1}{\alpha_1} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \frac{1}{\alpha_2}$$
;

$$B) \frac{1}{\alpha_1} + \frac{\delta_1 + \delta_2}{\lambda_1 + \lambda_2} + \frac{1}{\alpha_2};$$

$$\Gamma) \ \frac{1}{\alpha_1} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \frac{1}{\alpha_2} + k \ .$$

- 9. Укажите уравнение теплопередачи в рекуперативном теплообменнике.
 - a) $Q = k \cdot F \cdot \Delta t_{cp}$;
 - $6) \ Q = \alpha \cdot F(t_{xx} t_{cr});$
 - B) $Q = G(h'_1 h''_1);$
 - Γ) $Q = G_1 (h'_1 h''_1) F$.
- 10. Регенераторы это:
- а) Теплообменные аппараты, в которых передача теплоты между двумя жидкостями осуществляется через разделяющую стенку;
- б) теплообменные аппараты, в которых обмен теплотой осуществляется при смешивании горячей и холодной жидкостей;
- в) теплообменные аппараты, в которых одна и та же поверхность нагрева омывается то горячей, то холодной жидкостью;
- г) теплообменные аппараты, в которых обмен теплотой осуществляется при смешивании горячего и холодного воздуха.

ключ к тесту 7:

№ вопроса	Правильный ответ
1	в)
2	a)
3	в)
4	a)

5	б)
6	б)
7	б)
8	в)
9	a)
10	в)

Раздел 2: Основы теплотехники.

Вариант 8 (10)

1. Рекуперативные теплообменники – это:

- а) Теплообменные аппараты, в которых передача теплоты между двумя жидкостями осуществляется через разделяющую стенку;
- б) теплообменные аппараты, в которых обмен теплотой осуществляется при смешивании горячей и холодной жидкостей;
- в) теплообменные аппараты, в которых одна и та же поверхность нагрева омывается то горячей, то холодной жидкостью;
- г) теплообменные аппараты, в которых обмен теплотой осуществляется при смешивании горячего и холодного воздуха.

2. Работу расширения можно выразить в виде уравнения:

- a) L=pV;
- б) L=p/V;
- в) L= $p\Delta V$;
- г) L=pdV.

3. Степенью сжатия называется:

- а) отношение объема камеры сгорания к объему цилиндра;
- б) отношение длины камеры сгорания к длине цилиндра;
- в) отношение объема цилиндра к объему камеры сгорания;
- г) отношение объема, занимаемого поршнем к объему камеры сгорания.

4. Процесс теплообмена между поверхностью твердого тела и жидкостью (газом):

- а) называется теплопередачей;
- б) называется теплоотдачей;
- в) называется теплопроводностью;
- г) называется теплоемкостью.

5. В автомобильных двигателях внутреннего сгорания рекуперативные теплообменники:

- а) используют для охлаждения тормозной системы;
- б) используют для охлаждения двигателя внутреннего сгорания;
- в) используют для охлаждения подвески автомобиля;
- г) используют для охлаждения системы зажигания.

6. Если в теплообменнике горячая и холодная жидкости протекают:

- а) параллельно и в одном направлении, то такая схема называется противоточной;
- б) параллельно и в разных направлениях, то такая схема называется прямоточной;
- в) параллельно и в одном направлении, то такая схема называется прямоточной;
- г) параллельно и в разных направлениях, то такая схема называется приточной.

7. Единицей измерения удельной внутренней энергии является:

- а) Дж/кг;
- б) Дж/К;
- в) эВ/кг;
- г) Дж/(моль×К).

8. При расширении:

- а) температура рабочего тела падает;
- б) температура рабочего тела не изменяется;

- в) температура рабочего тела не возрастает;
- г) температура рабочего тела возрастает.
- 9. Укажите уравнение состояния идеального газа.
 - a) pv = const;
 - б) pV = mRT;
 - в) pv = RT;

$$\Gamma\left(p + \frac{a}{v^2}\right)(v - b) = RT.$$

- 10. Энтальпия (Н) термодинамической системы равна:
 - a) H = U + pV;
 - 6) $H = c_v + R$;
 - $\mathbf{B)} \ \mathbf{H} = \mathbf{U} + \mathbf{T}\mathbf{s};$
 - Γ) $H = c_p + R$.
- 11. Установите соответствие между понятием и его определением

1. Регенераторы	А) переход вещества из газообразного состояния в жидкое					
2. Рекуперативные	Б) теплообменные аппараты, в которых одна и та же					
теплообменники	поверхность нагрева омывается то горячей, то холодной					
3. Конденсация	жидкостью					
	В) теплообменные аппараты, в которых передача теплоты					
	между двумя жидкостями осуществляется через					
	разделяющую стенку					

ключ к тесту 8:

№ вопроса	Правильный ответ
1	a)
2	в)
3	8)
4	6)
5	б)
6	в)
7	a)
8	г)
9	б)
10	a)
11	1- Б,2-В, 3-А

Раздел 2: Основы теплотехники.

Вариант 9 (10)

- 1. В сосуде объемом 0.75 м³ находится 2.5 кг углекислого газа. Найти плотность газа.
 - a) 3.33 KF/M^3 ;
 - б) $1.875 \text{ кг} \cdot \text{м}^3$;
 - в) $0.3 \text{ м}^3/\text{кг}$;
 - Γ) 0.3 κ Γ / M^3 .
- 2. Укажите уравнение состояния идеального газа.
 - a) pv = const;
 - б) pV = mRT;
 - B) pv = RT;

$$\Gamma\left(p+\frac{a}{v^2}\right)\left(v-b\right)=RT.$$

- 3. К газу подводится извне 200 кДж теплоты, изменение внутренней энергии ΔU составляет 20 кДж. Определить удельную работу, кДж/кг.
 - a) $\ell = 20 \ кДж/кг$;
 - б) $\ell = 300 \, \text{кДж/кг};$
 - в) $\ell = 100 \text{ кДж/кг};$
 - Γ) $\ell = 180 \text{ кДж/к} \Gamma$.
- 4. К газу в круговом процессе подведено 250 кДж/кг теплоты. Термический КПД равен 0,5. Найти работу, полученную в цикле.
 - а) 125 кДж/кг;
 - б) 500 кДж/кг;
 - в) 250 кДж/кг;
 - г) 225 кДж/кг.
- 5. Конденсация это:
 - а) Переход вещества из жидкого состояния в газообразное;
 - б) переход вещества из газообразного состояния в жидкое;
 - в) переход вещества из твердого состояния в газообразное;
 - г) переход вещества из жидкого состояния в твердое.
- 6. Перенос теплоты при соприкосновении частиц, имеющих различную температуру, называется:
 - а) Теплопроводностью;
 - б) конвекцией;
 - в) излучением;
 - г) теплопередачей.
- 7. Укажите уравнение теплопередачи:
 - a) $Q = k(t_1-t_2) F$;
 - 6) $Q = \alpha (t_1-t_2) F$;
 - B) $Q = G_1 (h'_1 h''_1)F$;

$$_{\Gamma)} Q = \frac{1}{2\lambda} \ln \frac{\mathrm{d}_2}{\mathrm{d}_1}$$

- 8. Укажите уравнение теплопередачи в рекуперативном теплообменнике.
 - a) $Q = k \cdot F \cdot \Delta t_{cp}$;
 - Θ) $Q = α·F(t_{xx} t_{cx});$
 - B) $Q = G(h'_1 h''_1);$
 - Γ) $Q = G_1 (h'_1 h''_1)F$.
- 9. В двигателе внутреннего сгорания рабочим телом:
 - а) являются отработавшие газы;
 - б) является топливо;
 - в) является смесь воздуха с парами топлива;
 - г) является смесь кислорода с парами топлива.
- 10. Работа расширения в изохорном процессе:
 - а) не равна 0, т. к. dv=0;
 - б) равна 0, т. к. dv=0;
 - в) равна 0, т. к. dv≠0;
 - г) не равна 0, т. к. dv≠0.

№ вопроса	Правильный ответ
1	a)
2	б)
3	г)
4	a)
5	б)
6	a)
7	a)
8	a)
9	a)
10	б)

Раздел 2: Основы теплотехники.

Вариант 10 (10)

1. Степенью сжатия называется:

- а) отношение объема камеры сгорания к объему цилиндра;
- б) отношение длины камеры сгорания к длине цилиндра;
- в) отношение объема цилиндра к объему камеры сгорания;
- г) отношение объема, занимаемого поршнем к объему камеры сгорания.

2. Процесс с подводом теплоты при постоянном объеме называется:

- а) изохорный;
- б) изобарный;
- в) изотермический;
- г) адиабатный.

3. Процесс теплообмена между поверхностью твердого тела и жидкостью (газом):

- а) называется теплопередачей;
- б) называется теплоотдачей;
- в) называется теплопроводностью;
- г) называется теплоемкостью.

4. Теплообменником называют аппарат, предназначенный:

- а) для отвода теплоты от теплоносителей;
- б) для подвода теплоты к теплоносителям;
- в) для сообщения теплоты одному из теплоносителей в результате его отвода от другого теплоносителя;
- г) для сообщения теплоты одному из теплоносителей в результате его сообщения к другому теплоносителю.

5. Рекуперативным называется теплообменник, у которого:

- а) происходит передача теплоты от одного теплоносителя к другому;
- б) передача теплоты от одного теплоносителя к другому осуществляется через разделяющую их границу раздела;
- в) передача теплоты от одного теплоносителя к другому осуществляется через разделяющую их твердую стенку;
- г) передача теплоты от одного теплоносителя к другому осуществляется через разделяющую их жидкость.

6. Если в теплообменнике горячая и холодная жидкости протекают:

- а) параллельно и в одном направлении, то такая схема называется противоточной;
- б) параллельно и в разных направлениях, то такая схема называется прямоточной;
- в) параллельно и в одном направлении, то такая схема называется прямоточной;
- г) параллельно и в разных направлениях, то такая схема называется приточной.

7. В системе СИ единица удельного объема измеряется:

- a) в $M^2/K\Gamma$;
- б) в м/ $\kappa \Gamma^3$;
- B) B $M^3/K\Gamma$;
- Γ) $B M^3/K\Gamma^3$.
- 8. К газу подводится извне 100 кДж теплоты. Произведенная работа при этом составляет 120 кДж. Определить изменение внутренней энергии газа Δu , кДж/кг.
 - а) -20 кДж/кг;
 - б) 220 кДж/кг;
 - в) 20 кДж/кг;
 - г) 100 кДж/кг.
- 9. К газу подводится извне 200 кДж теплоты, изменение внутренней энергии ΔU составляет 20 кДж. Определить удельную работу, кДж/кг.
 - a) $\ell = 20 \text{ кДж/кг}$;
 - б) $\ell = 300 \text{ кДж/кг}$;
 - в) $\ell = 100 \text{ кДж/кг}$;
 - г) $\ell = 180 \text{ кДж/кг.}$
- 10. Теплоемкость какого процесса равна нулю.
 - а) Изотермического;
 - б) изохорного;
 - в) адиабатного;
 - г) изобарного.

11. Установите соответствие между понятием и его определением

	1 1						
1. Теплообменник	А) отношение объема цилиндра к объему камеры сгорания						
2. Теплоотдача	Б) аппарат, предназначенный для сообщения теплоты одному						
3. Степень сжатия	из теплоносителей в результате его отвода от другого						
	теплоносителя						
	В) процесс теплообмена между поверхностью твердого тела и						
	жидкостью (газом)						

ключ к тесту 10:

№ вопроса	Правильный ответ
1	в)
2	a)
3	б)
4	в)
5	в)
6	в)
7	в)
8	a)
9	г)
10	a)
11	1-Б, 2-В, 3-А

Условия выполнения задания

- 1. Место (время) выполнения задания: задание выполняется на занятие в аудиторное время
- 2. Максимальное время выполнения задания: 45 мин.

Шкала оценки образовательных достижений:

Критерии оценки:

<<5>> - 100 - 90% правильных ответов

«4» - 89 - 80% правильных ответов

 \ll 3» - 79 — 70% правильных ответов

«2» - 69% и менее правильных ответов

Практические работы по разделу 2. Основы теплотехники

Практическая работа №7.

1. Задание.

Тема: Основные понятия и определения процесса теплообмена. Теплопроводность. Теплопередача и теплообменные аппараты.

Наименование работы: Теплотехнический расчет теплообменных аппаратов **Цель работы:** - закрепить знания расчётных формул по теории теплообмена; - решить задачи.

<u>Задача 1:</u> Определить тепловой поток через кирпичную стену длиной 5 м, высотой 3 м, толщиной 250 мм, если на поверхностях стенки поддерживается температура 20^{0} C и -30^{0} C, а коэффициент теплопроводности 0,696 BT/(м. 0 C).

<u>Задача2:</u> Температура наружной поверхности котла 473° С, толщина стенки 0.02 м, коэффициент теплопроводности 46.6 Вт/(м. $^{\circ}$ С). С внутренней стороны стенка котла покрыта слоем накипи толщиной 0.001 м, её коэффициент теплопроводности 1.168 Вт/(м. $^{\circ}$ С). Температура внутренней поверхности 413° С. Определить удельный тепловой поток.

Задача 3: Для принятых теплопотерь в системе охлаждения двигателя Д-240 Q = 65 кВт определите требуемую площадь теплорассеивающей поверхности радиатора. Примите среднюю температуру воды в радиаторе 87° C, температура наружного воздуха 30° C. Коэффициент теплопередачи радиатора $170 \text{ Bt/(M}^2.{}^{\circ}\text{C})$.

Задача 4: Определить удельный тепловой поток через плоскую стенку парового котла и температуры поверхности стенок, ели заданы: температура топочных газов 2000° C, температура охлаждающей воды 27° C. Коэффициенты теплоотдачи от газов к стенке 467, от стенки к воде $3500 \; \mathrm{Bt/(m^2.^{\circ}C)}$, коэффициент теплопередачи $350 \; \mathrm{Bt/(m^2.^{\circ}C)}$.

Задача 5: В теплообменном аппарате с параллельным током протекает каждый час 1,2 м 3 горячей жидкости с плотностью 1100 кг/м 3 и теплоёмкостью 2,93 кДж/(кг. 0 С). Начальная температура горячего теплоносителя 110 0 С, конечная — 80 0 С. Определить площадь поверхности нагрева и конечную температуру нагреваемой воды, если за каждый час протекает 0,8 м 3 воды с начальной температурой 20 0 С, теплоёмкость воды 4,18 кДж/(кг. 0 С), плотность 1000 кг/м 3 . Коэффициент теплопередачи 1,04 кВт/(м 2 . 0 С).

Условия выполнения задания

	1. Место	(время)	выполнения	задания:	задание	выполняется	на занятие	в аудито	рное
время									

- 2. Максимальное время выполнения задания: 90_____ мин.
- 3. Вы можете воспользоваться учебником, конспектом лекций

Шкала оценки образовательных достижений:

Критерии оценки:

Задачи 1, 2 – удовлетворительно;

Задачи 2, 3,4 – хорошо;

Задачи 4, 5 -отлично.

Практическая работа №8.

Тема: Водогрейные и паровые котлы, водонагреватели

Наименование работы: Анализ устройства и работы котла

Цель работы: ознакомиться с работой и порядком проведения гидравлического испытания парового котла

Ход работы

- 1. По учебнику ознакомиться с работой и порядком проведения гидравлического испытания парообразователя Д-900.
 - 2. Начертить схему парового котла.

После выполнения задания студент должен:

уметь: выполнять расчет пробного давления;

знать: устройство и работу парообразователя, порядок проведения гидравлического испытания.

Контрольные вопросы:

- 1. Устройство парообразователя Д-900.
- 2. С какой целью проводят гидравлическое испытание парового котла?
- 3. Порядок гидравлического испытания.
- 4. расчет пробного давления.

Литература.

- 1.A.B. Кузнецов Основы теплотехники, топливо и смазочные материалы М: Колос, 2001, стр. 64
 - 2.В.И. Панин «Справочник по теплотехнике в сельском хозяйстве», стр. 308-309

Практическая работа №9.

Тема: Нагреватели воздуха

Наименование работы: Анализ устройства и работы теплогенератора

Цель работы: ознакомиться с работой и порядком проведения гидравлического испытания парового котла

Ход работы

- 1. По учебнику ознакомиться с работой теплогенератора, с системами управления теплогенераторм.
 - 2. Начертить схему теплогенератора.

После выполнения задания студент должен:

уметь: объяснять принцип действия теплогенератора;

знать: устройство и работу теплогенератора, системы управления теплогенераторм

Контрольные вопросы:

- 1. Устройство теплогенератора типа ТГ.
- 2. Ручная система управления теплогенератором.
- 3. Автоматическая система управления теплогенератором.
- 4. В каких случаях происходит автоматическое отключение и включение теплогенератора?

Литература.

- 1.А.В. Кузнецов Основы теплотехники, топливо и смазочные материалы М: Колос, 2001, стр. 71
 - 2.В.И. Панин «Справочник по теплотехнике в сельском хозяйстве», стр. 190

Практическая работа №10.

Тема: Холодильные установки.

Наименование работы: Теплотехнический расчёт и подбор холодильной установки.

Цель: - повторение основных положений теплотехнического расчёта холодильной машины;

- развитие навыков технических расчётов.

После выполнения задания студент

должен знать: способы охлаждения, типы холодильных машин;

должен уметь: выполнять расчёт и подбирать холодильную машину по справочной литературе.

Задание: Рассчитать и подобрать холодильную машину для помещения из кирпичей длиной 5 м, высотой 3 м, шириной 4 м. полы и потолочные перекрытия бетонные. Холодильник используется для охлаждения яблок (c=3,77 кДж/(кг. 0 C)) в деревянных ящиках (c=2,6 кДж/(кг. 0 C)). Масса поступающих яблок 600 кг/ч (расфасованы по 10 кг), масса одного ящика 2,3 кг. Яблоки охлаждаются с температуры 18^{0} C до температуры 1^{0} C. Температура в камере - 1^{0} C, влажность 90%.

Контрольные вопросы:

- 1.Способы охлаждения.
- 2. Недостатки ледяного и льдосолёного охлаждения.
- 3. Какие холодильные агенты используются в холодильных машинах?
- 4.Типы холодильных машин.

Инструкционная карта № 1

Тема: Холодильные установки.

Наименование работы: Теплотехнический расчёт и подбор холодильной установки.

Цель: - повторение основных положений теплотехнического расчёта холодильной машины;

- развитие навыков технических расчётов.

После выполнения задания студент

должен знать: способы охлаждения, типы холодильных машин;

должен уметь: выполнять расчёт и подбирать холодильную машину по справочной литературе.

Задание: Рассчитать и подобрать холодильную машину для помещения из бетона длиной 4 м, высотой 3 м, шириной 3 м. Полы и потолочные перекрытия бетонные. Холодильник используется для охлаждения мяса (c=1,8 кДж/(кг. 0 C)). Масса поступающего мяса 200 кг/ч. Мясо охлаждается с температуры 20^0 C до температуры -3^0 C. Температура в камере -5^0 C, влажность 85%.

Контрольные вопросы:

- 1.Способы охлаждения.
- 2. Недостатки ледяного и льдосолёного охлаждения.

- 3. Какие холодильные агенты используются в холодильных машинах?
- 4.Типы холодильных машин.

Порядок расчёта холодильной мощности.

При расчете охлаждаемых помещений в общем случае определяют следующие теплопритоки:

$$Q=Q_1+Q_2+Q_3+Q_4+Q_5(1)$$

где Q_1 – теплоприток от окружающей среды через ограждения, кBт;

О2 – теплоприток от продукции при их холодильной обработке, кВт;

 Q_3 – теплоприток от наружного воздуха при вентиляции охлаждаемого помещения, кВт;

 Q_4 – теплоприток от источников, связанных с эксплуатацией охлаждаемых помещений, кВт;

Теплоприток от окружающей среды

Этот теплоприток в общем случае включает теплопритоки, обусловленные разностью температур окружающего воздуха и помещения, и солнечным тепловым излучением.

$$Q_1 = \sum k_i F_i(t_H - t_K) \quad (2)$$

 F_i – площади поверхности стен, пола, потолка, м²;

t_н - температура воздуха с наружной стороны ограждения,

 $t_{\rm K}$ — заданная температура воздуха в камере,

 $k_H - коэффициент теплопередачи, кВт/(м²К).$

Расчётная температура наружного воздуха ориентировочно равна: для северной климатической зоны 25, средней 28 и южной 32^{0} C; температура грунта под полом — соответственно 10, 14 и 18^{0} C.

Теплоприток от продукции при их холодильной обработке

 $Q_2 = 0.278(mc + m_tc_t)(t_1-t_2)$ (3)

где m и m_t – массы продукта и тары, поступающих в холодильник, кг/ч;

с и c_t – теплоёмкости охлаждаемого продукта и материала тары, кДж/(кг. 0 С);

 t_1 и t_2 – температура продукта и тары до и после охлаждения, 0 С

Теплоприток от наружного воздуха при вентиляции охлаждаемого помещения

 $Q_3 = 0.278aV\rho_{K}(H_H - H_K)$ (4)

где а – кратность вентиляции, равная 0,04...0,16 обмена воздуха в час;

V – объём холодильной камеры, M^3 ;

 $\rho_{\rm K}$ – плотность воздуха в камере, кг/м³;

 $H_{\mbox{\tiny H}}$ и $H_{\mbox{\tiny K}}$ – энтальпии наружного воздуха при расчётных условиях и воздуха камеры, кДж/кг, определяется по H,d-диаграмме влажного воздуха.

Теплоприток от источников, связанных с эксплуатацией охлаждаемых помещений

Ориентировочно принимают в размере 10...20% расхода холода на теплопередачу через ограждения холодильники:

$$Q_4 = (0,1...0,2)Q_1$$
 (5)

Рабочая холодильная мощность установки

$$Q_p = \zeta Q/b \quad (6)$$

Где ζ – коэффициент, учитывающий теплопритоки в трубопроводах (при непосредственном испарении хладагента ζ =1,05...1,07, при рассольной системе охлаждения ζ =1,1...1,12);

b - коэффициент рабочего времени холодильной машины. Для малых холодильных машин принимают b=0.75, для машин малой холодильной мощности b=0.8.

По найденному значению Q_p для принятой системы холодоснабжения (непосредственное или рассольное охлаждение), пользуясь каталогом или справочником по холодильным установкам, выбирают соответствующую модель машины.

Литература.

- 1.A.B. Кузнецов Основы теплотехники, топливо и смазочные материалы М: Колос, 2001
 - 2.А.А.Захаров Применение теплоты в сельском хозяйстве М: Агропромиздат, 1986.

Условия выполнения задания

- 1. Место (время) выполнения задания: <u>задание выполняется на занятие в аудиторное время</u>
 - 2. Максимальное время выполнения задания: 90 мин
 - 3. Вы можете воспользоваться учебником, конспектом лекций

Шкала оценки образовательных достижений:

Критерии оценки:

Выполнение практически всей работы (не менее 70%) – положительная оценка

Практическая работа №11.

Тема: Отопления и горячее водоснабжение. Вентиляция.

Наименование работы: Расчёт воздухообмена животноводческих помещений. Подбор калориферной установки.

Цель: -повторить расчётные формулы для расчёта воздухообмена животноводческого помещения;

-выполнить расчёт воздухообмена животноводческого помещения по заданному условию, подобрать калориферную установку.

Задание: 1. Рассчитать воздухообмен в животноводческом помещении по выделениям углекислоты и водяных паров.

2. подобрать калориферную установку.

Условие: Свинарник для поросят до двухмесячного возраста на 400 голов, массой 15 кг. Объём помещения 1200 м^3 , температура внутри помещения 18^0C , влажность воздуха 75%. Температура наружного воздуха -20^0C , влажность 83%. Давление воздуха $101,3 \text{ к}\Pi a$.

Контрольные вопросы:

- 1. Какая ПДК углекислоты в животноводческих помещениях?
- 2. Что входит в понятие микроклимат животноводческих помещений?
- 3. По каким параметрам выбирается калориферная установка?
- 4. Какие системы вентиляции применяются в животноводческих помещениях?

Учебная литература:

- 1. А.В. Кузнецов «основы теплотехники. Топливо и смазочные материалы».
- 2. А.А. Захаров «Применение теплоты в сельском хозяйстве».

Инструкционная карта № 2

Тема: Отопление и горячее водоснабжение. Вентиляция.

Наименование работы: Расчёт воздухообмена животноводческих помещений. Подбор калориферной установки.

Цель: -повторить расчётные формулы для расчёта воздухообмена животноводческого помещения;

- выполнить расчёт воздухообмена животноводческого помещения по заданному условию, подобрать калориферную установку.

Задание: 1. Рассчитать воздухообмен в животноводческом помещении по выделениям углекислоты и водяных паров.

2. подобрать калориферную установку.

Условие: Свинарник для взрослых свиней на откорме на 600 голов, массой 200 кг. Объём помещения 7000 м³, температура внутри помещения 10^{0} С, влажность воздуха 75%. Температура наружного воздуха -18^{0} С, влажность 85%. Давление воздуха 100 кПа.

Условие: Коровник для дойных коров на 600 голов (уровень лактации 10 л), массой 400 кг. Объём помещения 7500 м^3 , температура внутри помещения 10^0C , влажность воздуха 75%. Температура наружного воздуха -25^0C , влажность 80%. Давление воздуха 97.3 кПа.

Условие: Телятник для телят в возрасте до 1 месяца на 300 голов, массой 50 кг. Объём помещения 1200 м^3 , температура внутри помещения 16^0C , влажность воздуха 75%. Температура наружного воздуха -28^0C , влажность 80%. Давление воздуха $101,3 \text{ к}\Pi a$.

Условие: Ферма для волов на откорме на 200 голов, массой 600 кг. Объём помещения 6000 м^3 , температура внутри помещения 8^0C , влажность воздуха 75%. Температура наружного воздуха -20^0C , влажность 85%. Давление воздуха $97.3 \text{ к}\Pi a$.

Расчёт воздухообмена в животноводческих помещениях.

1. По выделениям газов:

$$L = \frac{x + h}{x_2 - x_1}, \, M^3/4, \, \Gamma Д e$$

х – концентрация СО₂, выделяемая одним животным, л/ч (прил. 19);

 x_1 — концентрация вредных веществ в приточном воздухе, принимается равной 0,3...0,4 л/м 3 :

$$x_2 = 2 \text{ л/м}^3 - \Pi \text{ДК CO}_2$$

n – количество животных данного вида

2. По выделениям водяных паров:

$$L_{\rm W} = \frac{W}{(d_{\rm B} - d_{\rm H}) * \rho}$$
, м³/ч, где

W – масса влаги, выделяющейся в помещении, г/ч

$$W = W_{x} + W_{ucn}$$

$$W_{w} = \omega n k$$

 ω – выделение водяных паров одним животным, г/ч (прил. 19);

k – коэффициент, учитывающий изменение количества выделяемых животным и водяных паров в зависимости от температуры воздуха внутри помещения (прил. 20);

$$W_{\text{исп}} = \xi W_{\text{ж}}$$

 $W_{\text{ж}}$ – влага, выделяемая животными;

 $W_{\text{исп}}-$ влага, испаряющаяся с мокрых поверхностей помещения;

 ξ – коэффициент, равный 0,1...0,25 – для коровников и телятников

$$0,1...0,3$$
 – для свинарников;

 $d_{\text{в}}$, $d_{\text{н}}$ - влагосодержание внутреннего и наружного приточного воздуха, г/кг сухого воздуха, определяется по h,d -диаграмме по значениям температуры и относительной влажности внутреннего и наружного воздуха (прил. 14);

$$\rho$$
 – плотность воздуха:

$$\rho = \Gamma/M^3$$

Необходимый воздухообмен принимаем по наибольшей величине.

Правильность расчёта проверяем по величине кратности воздухообмена:

$$K = \frac{L}{V_{\Pi}} = 3...5$$

Подбор калориферной установки.

1. Тепловой поток, необходимый для нагрева воздуха:

 $Q = 0.278 L \rho c(t_B - t_H), B_T$

 $c = 1 \text{ кДж/(кг.}^{0}\text{C}) - \text{средняя изобарная теплоёмкость воздуха}$

2. Расчётная площадь сечения калорифера для прохода воздуха:

$$f_p = \frac{L\rho}{3600(\vartheta\rho)_p}, M^2$$

 $(\nu \rho)_p = 4...12 \ \kappa \Gamma/(c.m^2) - расчётная массовая скорость воздуха.$

По таблице 5.5 выбираем марку и номер калорифера, записываем значение площади поверхности нагрева – F, M^2 и площади живого сечения по воздуху f, M^2 , (теплоноситель – водяной пар).

3. Действительная массовая скорость воздуха в калорифере:

$$(\upsilon \rho) = \frac{L\rho}{3600 * f} , \kappa \Gamma/(c.M^2)$$

4. Теплоотдача калорифера:

$$Q_{K} = kF(t_{cp}^{\prime} - t_{cp}),$$

k- коэффициент теплопередачи, выбирают по табл. 5.6 в зависимости от марки калорифера и типа теплоносителя;

 $t_{cp}^{\ \ \ }=100^{0}C-$ средняя температура теплоносителя (водяной пар);

 $t_{cp} = -$ средняя температура нагреваемого воздуха.

Теплоотдача должна быть на 15...20% больше расчётного расхода теплоты Q, необходимой для нагревания воздуха:

$$\frac{Q_{K} - Q}{Q_{K}} * 100 = 15...20\%$$

Если это условие не удовлетворяется, то принимают калорифер другого номера или несколько последовательно установленных калориферов и повторяют расчёт.

Контрольные вопросы:

- 1. Какая ПДК углекислоты в животноводческих помещениях?
- 2. Что входит в понятие микроклимат животноводческих помещений?
- 3.По каким параметрам выбирается калориферная установка?
- 4. Какие системы вентиляции применяются в животноводческих помещениях?

Учебная литература:

- 1.А.В. Кузнецов «основы теплотехники. Топливо и смазочные материалы».
- 2.А.А. Захаров «Применение теплоты в сельском хозяйстве».

Условия выполнения задания

- 1. Место (время) выполнения задания: задание выполняется на занятие в аудиторное время
 - 2. Максимальное время выполнения задания: 90_ мин.
 - 3. Вы можете воспользоваться учебником, конспектом лекций

Шкала оценки образовательных достижений:

Критерии оценки:

Выполнение практически всей работы (не менее 70%) – положительная оценка

Практическая работа №12.

Тема: Сушка сельскохозяйственной продукции.

Наименование работы: Определение режимов сушки сена активным вентилированием.

Цель: -повторить способы сушки, расчётные формулы для определения количества воздуха и количества теплоты на сушку сена;

- выполнить расчёт процесса сушки сена активным вентилированием.

Задание: Определить количество воздуха и количество теплоты, необходимое для сушки сена по заданному условию.

Условие: Сено в тюках. Количество тюков n=500, масса сена в одном тюке $m_1=12$ кг, начальная влажность сена $\omega_1=45\%$. Провести досушивание до влажности $\omega_2=18\%$. Влажность воздуха, поступающего на сушку $\phi=45\%$, температура $t_1=14^0$ С. В теплогенераторе воздух подогревается до температуры $t_2=160^0$ С. Далее он направляется в сушилку, где высушивая сено, сам становится влажнее и остывает до температуры $t_3=85^0$ С.

Контрольные вопросы:

- 1. Способы сушки.
- 2. Какой способ используется для досушивания сена активным вентилированием?
- 3. Основные параметры влажного воздуха.

Учебная литература:

- 1. А.В. Кузнецов «основы теплотехники. Топливо и смазочные материалы».
- 2. А.А. Захаров «Применение теплоты в сельском хозяйстве».

Инструкционная карта № 3

Тема: Сушка сельскохозяйственной продукции.

Наименование работы: Определение режимов сушки сена активным вентилированием.

Цель: -повторить способы сушки, расчётные формулы для определения количества воздуха и количества теплоты на сушку сена;

- выполнить расчёт процесса сушки сена активным вентилированием.

Задание: Определить количество воздуха и количество теплоты, необходимое для сушки сена по заданному условию.

Условие: Сено в стогах. Количество стогов n=7, масса сена в одном стоге $m_1=3000$ кг, начальная влажность сена $\omega_1=45\%$. Провести досушивание до влажности $\omega_2=16\%$. Влажность воздуха, поступающего на сушку $\phi=65\%$, температура $t_1=16^{0}$ С. В теплогенераторе воздух подогревается до температуры $t_2=80^{0}$ С. Далее он направляется в сушилку, где высушивая сено, сам становится влажнее и остывает до температуры $t_3=40^{0}$ С.

Контрольные вопросы:

- 1. Способы сушки.
- 2. Какой способ используется для досушивания сена активным вентилированием?
- 3. Основные параметры влажного воздуха.

Учебная литература:

- 1. А.В. Кузнецов «основы теплотехники. Топливо и смазочные материалы».
- 2. А.А. Захаров «Применение теплоты в сельском хозяйстве».

Условия выполнения задания

- 1. Место (время) выполнения задания: <u>задание выполняется на занятие в аудиторное время</u>
 - 2. Максимальное время выполнения задания: 90 мин.
 - 3. Вы можете воспользоваться учебником, конспектом лекций

Шкала оценки образовательных достижений:

Критерии оценки:

Выполнение практически всей работы (не менее 70%) – положительная оценка

2.2. Задание для промежуточной аттестации

Вопросы для дифференцированного зачета

- 1. Предмет гидравлики и его значение.
- 2. Основные физические свойства жидкости.
- 3. Основные законы гидростатики, кинематики и динамики движущихся потоков.
- 4. Особенности движения жидкостей и газов по трубам (трубопроводам)
- 5. Гидроудар.
- 6. Основные физические свойства жидкости.
- 7. Изучение закона Паскаля.
- 8. Изучение закона Архимеда.
- 9. Практическая подготовка.
- 10. Методы определения расхода жидкости.
- 11. Расходомеры.
- 12. Назначение и классификация гидравлических машин.
- 13. Применение гидравлических машин в сельскохозяйственном производстве.
- 14. Принципы работы гидравлических машин и систем.
- 15. Характеристики насосов.
- 16. Основы теории подобия лопастных насосов.
- 17. Устройство гидравлических машин и систем в сельскохозяйственной технике
- 18. Назначение и общая характеристика гидропривода.
- 19. Классификация гидроприводов.
- 20. Принцип действия объемного гидропривода.
- 21. Гидродинамические передачи.
- 22. Применение гидродинамических передач на сельскохозяйственной технике.
- 23. Устройство гидропривода ходовых систем сельскохозяйственных машин.
- 24. Основные понятия и определения термодинамики.
- 25. Газовые смеси.
- 26. Теплоемкость.
- 27. Основные законы термодинамики.
- 28. Приборы и методы определения теплоемкости твердых тел, воздуха водяного пара.
- 29. Основные понятия и определения теплообмена.
- 30. Теплопроводность.
- 31. Механизмы передачи теплоты и коэффициент теплопроводности.
- 32. Конвективный теплообмен.
- 33. Основные положения теории подобия и ее применение для описания теплопередачи.
- 34. Теплообмен излучением.
- 35. Теплопередача.
- 36. Теплообменные аппараты.
- 37. Принципы их работы.
- 38. Применение теплообменных аппаратов в сельскохозяйственном производстве.
- 39. Вентиляция и кондиционирование воздуха в помещениях, отопление зданий и помещений, в том числе животноводческих и птицеводческих, сушка сельхозпродуктов, обогрев сооружений защищенного грунта.
- 40. Нетрадиционные и возобновляемые источники энергии.

Критерии оценки дифференцированного зачёта

Оценка «отлично» - выставляется, если обучающийся владеет знаниями предмета в полном объеме программы, достаточно глубоко осмысливает дисциплину; самостоятельно, в логической последовательности и исчерпывающе отвечает на все вопросы, подчеркивает при этом самое существенное, умеет анализировать, сравнивать, классифицировать, обобщать, конкретизировать и систематизировать изученный материал, выделять в нем главное: устанавливать причинно-следственные связи; четко формирует ответы.

Оценка «**хорошо**» - выставляется, если обучающийся владеет знаниями дисциплины почти в полном объеме программы (имеются пробелы знаний только в некоторых, особенно сложных разделах); самостоятельно и отчасти при наводящих вопросах дает полноценные

ответы на вопросы; не всегда выделяет наиболее существенное, не допускает вместе с тем серьезных ошибок в ответах.

Оценка «удовлетворительно» - выставляется обучающийся, если он владеет основным объемом знаний по дисциплине; проявляет затруднения в самостоятельных ответах, оперирует неточными формулировками; в процессе ответов допускаются ошибки по существу вопросов.

Оценка «**неудовлетворительно**» - выставляется, если не освоил обязательного минимума знаний предмета, не способен ответить на вопросы даже при дополнительных наводящих вопросах.